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ABSTRACT

The work represented by this report is a combination of
foundational mathematics and software design. A mathematical
model of the Commonality Analysis problem was developed and

some important properties were discovered. The complexity of

the problem is described herein and techniques, both

deterministic and heuristic, for reducing that complexity are

presented. Weaknesses are pointed out in the existing software

(System Commonality Analysis Tool) and several improvements are

recommended. It is recommended that: (i) an expert system for

guiding the design of new databases be developed; (2) a

distributed knowledge base be created and maintained for the

purpose of encoding the commonality relationships between

design items in commonality databases; (3) a software module be

produced which automatically generates commonality alternative

sets from commonality databases using the knowledge associated

with those databases; and (4) a more complete commonality

analysis module be written which is capable of generating any

type of feasible solution.
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INTRODUCTIONAND OBJECTIVES

The purpose of this work is to assess the feasibility of an

artificially intelligent software tool to aid in the process of

identification of commonality alternatives. Commonality is the

degree to which two or more end items share common

characteristics. A high degree of commonality is to be desired

as an engineering design criterion for obvious economic

reasons. Commonality analysis attempts to enhance commonality

by choosing a set of end items which spans all the needed

functionality of a larger set, and choosing that set which

represents a minimum cost according to some previously

agreed-upon cost measure. The recommendation which is inferred

by such a minimum-cost set of items is that only those items be

implemented and that the functionality of the remaining items

be achieved by a systematic substitution of additional copies

of the items in the implementation set.

The commonality analysis process necessarily involves three

key activities:

I. The gathering and organization of data.

2. Identification of commonality alternatives.

3. Evaluation of alternatives.

Automation by software is a desirable goal in all three

areas. What this report recommends is the development of an

integrated set of software packages which interacts with

existing software to solve a variety of problems in commonality

analysis.
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CRITIQUE OF EXISTING SOFTWARE.

The Systems Commonality Analysis Tool (SCAT) is presently

the only available tool for automating the above process. SCAT

provides limited assistance in all three areas; however,

definite improvements can be made, as explained below.

I. For the gathering and organization of data, SCAT

provides a front end to a commercial database management system

(DBMS). Through SCAT, one may create and modify commonality

databases, and for sophisticated database functions one may

enter the DBMS proper from within SCAT. SCAT assumes that

certain attributes (the so-called "generic" attributes) apply

to all databases. There are two sets of such generic

attributes - one set for hardware items and one set for

software components. The generic attributes are simply those

attributes which are directly relevant to SCAT's Life Cycle

Cost (LCC) analysis of the item. One advantage of requiring
data to be entered via the SCAT front end is that the user is

constrained to always include these generic attributes.

There are two crucial ingredients missing from the above

data gathering strategy. Firstly, SCAT gives almost no

guidance concerning the selection, naming, and use of other

attributes besides those specifically needed for its analysis.

These other attributes, dubbed "discriminating" attributes, are

chosen by the database administrator, based on his expert

knowledge of the items in the database. A predictable

consequence of this lack of guidance is that similar data will

be encoded in dissimilar fashion. For example, one database

administrator will create a new database which incorporates an

attribute named LIQUID which takes on values "Y" or "N", the

first value indicating liquid and the second gas. Another

database administrator may create a database which incorporates

similar items with similar properties, but will use a different

name and different values for his attributes. For example, he

may use the name TYPE with values "LIQUID" and "GAS".

The second missing ingredient is the information needed to

form groups of commonality alternatives for the analysis

process. The database creator possesses essential knowledge

about which items may be considered common. The first way that

such knowledge is brought to bear on the problem is that a set

of sorting criteria is communicated to SCAT, whereupon SCAT

sorts the data as specified. The hope is that when SCAT or the

DBMS displays or prints the data, groups of common items will

coalesce. The second kind of knowledge is that needed for

selecting commonality alternatives from a sorted set of

records. The SCAT user needs to possess the ability to scan

the sorted data and pick out groups of common items. Thus
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there is "sorting" knowledge and there is "grouping" knowledge.

The SCAT paradigm indicates that a sequence of sorting and

grouping operations will identify one or more sets of items

which qualify for comparative LCC analysis.

It must be said here that certain kinds of commonality

options do not fit neatly into the SCAT paradigm. SCAT does

not provide facilities to aid in identifying ways of

"extending" the function of an item, nor is it capable of

automatically doing a componentwise breakdown analysis of a set

of complex alternatives. Such sophisticated techniques are

aided by a tool like SCAT, but SCAT does not provide a

framework to support them.

Putting aside for now the idea of developing a completely
general tool, a more modest goal is to somehow automate the

"sorting and grouping" technique. In order to do this, it is

necessary to capture the knowledge needed in the sorting and

grouping process. This knowledge may be the most important

kind of "data" available. It is certainly the most difficult

to capture. SCAT provides no help in capturing such knowledge.

2. For the identification of commonality alternatives, as

indicated above, SCAT provides only the standard database

sorting, marking, and subsetting functions. No guidance is

given regarding what is a "good" sort criterion, or what are

"good" criteria for displaying, marking, and saving subsets of

a database. Indeed, unless expert knowledge is available, no

software product can provide such guidance. Thus an

improvement in this area requires an improvement in the

facilities available for data gathering.

We have a definite advantage with knowledge of this form,

however. It can be easily encoded. A sort operation is

encoded as a series of (key,direction) pairs. For example,

{(TYPE, Ascending), (VOLTAGE, Ascending), (DIAMETER,

Descending)}. A subsetting operation is encoded as a

relational expression involving the attributes of the database.

An example is 8.6 LT VOL AND VOL LT 12.8. Finally, a grouping

operation is encoded as a relational expression involving the

attributes of two or more records of the database. An example

of this is ABS(VOL(1)-VOL(2)) < 0.5. The third type of

operation is especially interesting, since it is not an

operation directly supported by standard DBMS's.

It must be said here that knowledge of this sort cannot be

gathered once and for all. The content and meaning of the data

determine the content of the knowledge. As data is entered and

as new databases are built, the knowledge needed to analyze

that data for commonality alternatives will change. It is

impractical, also, to require that all such knowledge reside in
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a central place such as a single file of data or a single
program. This sort of knowledge belongs with the data itself.
The knowledge relevant to a piece of data must be physically
and logically associated with that data.

Once the knowledge is gathered and made available as an
integral component of a given commonality database, the
selection of alternatives in that database may be automated
with the use of a "shell" program which reads both data and

knowledge from the database and produces as its output a series

of database subsets representing proposed sets of commonality

alternatives. Each such set would be presented to the user for

closer scrutiny. An opportunity would then be presented for

the user to approve or disapprove of these choices. In case a

given choice of commonality alternatives was too restrictive or

not restrictive enough, the system would prompt the user for

additional knowledge which might help to avoid repeating the
error.

3. SCAT provides a sophisticated resource for evaluating

commonality alternatives, once such alternatives have been

identified. The SCAT user presents a subset database which he

or she has identified as a set of potentially common items, and

SCAT provides a comparative study of the LCC differences

between producing each item as an individually designed and

produced component (the "unique" option) and producing a single

item from the set of items to serve its own function as well as

those of all other items in the set. If there are n items,

SCAT computes n+l LCC estimates: one for each item, assuming it

is chosen as the common item, plus one for the uniqu e option.

It then sorts on the computed life cycle costs, and displays
the sorted data.

The problem with the above approach is that it makes two

basic assumptions that may not in general be valid. The first

is that every item in a set of commonality alternatives can be

substituted for every other item. The second is that either

(a) there will always be a single, optimal common item, and the

most economical alternative is to replace all items by that

common item, or (b) it is cheaper to produce all items

separately, i.e. to choose the unique option.

Now it is doubtful that the designers of SCAT really

believed the above assumptions. Indeed, if the SCAT user is

aware that those assumptions are not always valid, he may still

make considerable progress by using SCAT repeatedly and/or

throwing away unnecessary information. But SCAT leads its user

into false assumptions.

In fact, there are often asymmetric constraints that allow,

say, a larger device to be substituted for a smaller one, but
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will not allow the smaller device to be used in the place of

the larger one. The only feature of SCAT that has bearing on

this situation is its use of what are called "critical"

attributes. A critical attribute is one whose value must never

be diminished in a substitution. For example, if diameter is

critical then when substituting item A with diameter 5 for item

B with diameter 7 we are obliged to use two of item A. In

practice, substitution of multiple copies of one item for a

single copy of another is not always feasible. The result is

that commonality is not always a symmetric relationship. There

is no room in the SCAT model for asymmetric commonality

relations. In order to handle a case like this, the user

typically has to perform a standard SCAT analysis and ignore

certain alternatives.

Also, it may often happen that the best commonality

solution does not present a single item to be substituted for

all other items, but instead requires keeping some items,

discontinuing development on other items, and making selected

substitutions of items in the first set for items in the

second. This type of solution is not only beyond the scope of

SCAT, but cannot easily be solved even with repeated

applications of SCAT. The extreme complexity of such a

solution, even in cases involving relatively few alternatives,

would cause a solution by repeated SCAT analyses to require

months to complete. It is a moot point that such a solution is

possible with repeated applications of SCAT, not only because

of the potentially prohibitive amounts of time required, but

also because SCAT does not present to the user an interface

that suggests such solutions are possible, nor does it offer

any features to simplify the extremely complex process of

arriving at a general solution.
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MATHEMATICALCONSIDERATIONS

The complexity of a general solution to the commonality

problem is immense. Furthermore, there is no significant body

of knowledge available in technical and scientific literature

which can be drawn upon to guide the solution process.

Therefore a large part of the work represented by this report

was foundational in nature. Due to the creative, mathematical

nature of that work, it was felt that the most appropriate

forum for its presentation was in an applied mathematics

journal. A complete mathematical formulation of the problem is

to be found in a paper (Yeager, 1987) submitted by the author

to the journal, Operations Research. In that article some

foundations are laid for an orderly assault on the general

problem. The details of the paper are omitted from the report,

but preprints are available from the author. An illustrative

summary of the major results is presented below.

The data in a database is a collection of records

describing a set A = {al, a2 ..... an } of items. The items may

be valves, pumps, circuit boards, or anything for which

sufficient data is available for analysis. There is a set of

attribute functions defined on A, which represents a set

of values associated with the items. Some example attributes

are weight, density, volume, composition, and power

consumption. A Life-Cycle-Cost (LCC) estimate on a given item

requires that certain attributes apply to that item. The SCAT

program requires that data on hardware items include 12 generic

attributes, II of which have direct bearing on the LCC

analysis.

Let us begin with an illustration of the magnitude of the

mathematical problem and the complexity of a potential

solution. There are two sources of complexity - one is the

sophistication of the LCC formula itself, and another is the

complexity of the algorithm one uses to select which items to

retain and which to replace. The SCAT program does a thorough

treatment of the first area and pays little attention to the

second. In what follows we will attempt a preliminary

investigation of that second question.

A solution to the commonality analysis problem has two

components: (I) a partition of the set A into smaller subsets,

and (2) a set of representatives of the subsets of the

partition. For example, for n = 6 we may propose the following

as a solution:

Partition: {{al,az,a3 },{a4 },{as,a6 }}.

Set of representatives: {a3,a_,a5 }.
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The above "proposed solution" stipulates that we produce only

items a3, a4, and as, that a3 replace al and a2, and that as

replace a6. A proposed solution "works", i.e. is a true

solution to the problem, if the substitution strategy it

advocates yields a minimum cost according to some agreed-upon

scheme for assigning costs to proposed solutions.

To gain an appreciation for the complexity of the

commonality analysis problem, consider that the number of

possible solutions of the above type is given by the formula

n-I

; Cn. i (n-i)i
i=O

where Cn,i is the number of combinations of n things, taken i
at a time.

The size of this number is on the same order as n!. The

following table investigates its behavior for some small values

of n.

n-I

n 2 n ; Cn. i (n-i) i n!

i=O

1 2

2 4

3 8

4 16

5 32

6 64

7 128

8 256

9 512

I0 1024

ii 2048

12 4096

13 8192

14 16384

15 32768

16 65536

17 131072

18 262144

19 524288

20 1048576

1

3

I0

41

196

1057

6322

41393

293608

2237921

1 821010E+07

1 573291E+08

1 436630E+09

1 381086E+I0

1 393056E+II

1 469959E+12

1 618459E+13

1 855042E+14

2 208842E+15

2.727262E+16

1

2

6

24

120

720

5040

40320

362880

3628800

3.991680E+07

4.790016E+08

6.227021E+09

8.717829E+I0

1.307674E+12

2.092279E+13

3.556874E+14

6.402374E+15

1.216451E+17

2.432902E+18

|
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Thus a computer with the capability to generate a million

potential solutions per second (a very powerful computer

indeed) would require about 865 years to generate all solutions

for a set of 20 items.

Thus a "brute force" approach consisting of an algorithm to

enumerate all possible solutions and choose one with the

smallest associated cost would be impractical for values of n

much greater than I0. The interesting thing is that the nature

of commonality problems is that very seldom will one have more

than ten to twenty candidates available for comparison, so that

the "brute force" technique is not to be completely discounted.

It must be applied very judiciously, however, with full

knowledge of its high degree of complexity.

Fortunately, there are quite effective ways of "paring

down" the size of the solution space. The simplest of these is

the feasibility relation. There are two processes involved in

the generation of a potential commonality solution: (a) choose

a partition, and (b) choose a representative from each set of

the partition. The feasibility relation constrains us in the

number of ways we may choose such a representative.

The feasibility relation tells us when a given item may be

realistically substituted for another. It may be quite simple,

stating for example that item al may be substituted for item aj

only if al is "larger" in some sense than aj . Or it may be

quite complex, calling into play such attributes as chemical

composition, weight, diameter - literally hundreds of possible
factors.

The best situation is that in which the feasibility

relation linearly orders the set of candidates. In that case

there is only one choice for a representative of a given

subset, i.e. the only item in that subset which is

substitutable for every other item in that set. In this

situation we can reduce the size of the solution space to the

number of partitions of a set with n elements. Unfortunately,

that too is a very large number even for relatively small n.

We proceed, then, to develop a class of techniques for

significantly reducing the size of the solution space. These

techniques concentrate on reducing the number of partitions

which must be examined.

In order to prevent our formulas from becoming too unwieldy

and obscuring the essential nature of the problem, we will make

some simplifying assumptions about the LCC formula. The

primary simplification will be to assume linearity. In

particular, we will use the following abstract formulation of
the LCC cost of an item. Our LCC formula requires only three

attributes. For item al, we will call these attributes d_, qi,

and k_. d_ is the design, development, test and engineering
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cost of producing the item. ql is the quantity, i.e. the

number of copies of al which will be needed. Finally, kl is

the per-unit cost of producing, deploying, operating, and

maintaining the item. Many factors go into computing the

per-unit cost attribute, such as weight, volume, density,

energy consumption, mean time between failure, and expected

service life of the space system. Actually kl is the total of

all cost factors which are directly proportional to the number

q: of items needed. For our purposes it suffices to assume

they are precomputed and stored as a single attribute. We use

the following as a simple first approximation to the cost of
the item:

Ci = di + kiqi

The natural interpretation we now give to the cost of

implementing the functionality of all items in a set K of items

by substituting item a, for every other item in K is

dl + kl ;- q_

x_K

We will refer to the above as the linear cost function. In

contrast, the SCAT formula is a more complex sum of terms, most

of which are either constant or linear in q,. An exception is

the PROD term, the production costs incurred in producing q,

copies of item al. PROD is nonlinear in q,, but it is constant

if q: = 1 and approaches linearity in q_ as the "Learning

Curve" parameter approaches I00_. (The Learning Curve is a

user-adjustable system default in SCAT, assumed to be the same

for all items in a given analysis.) When we say we are assuming

linearity in q,, then, we deviate slightly from the SCAT model.

What we say about a solution using the above formula can be

carried over into the general SCAT formula analysis only in a

heuristic sense. We can be certain that in passing to the more

general SCAT formula we will be introducing more, not less,

complexity. What we get out of using the above formula, then,

is a mathematical model which represents the simplest model

that we may hope to obtain. Much can be said about a general

solution to the problem without so constricting the form of the

cost function. But the more complex the cost function the less

can be said about a general solution.

The quantities d,, k,, and q, are constants for a given

item a:, and we assume q, > 0 for all i. The quantity q,

represents the total needed number of items for the period over

which our cost projections are valid.

The linear cost function is well-behaved in a very

important sense. It can be proven that if the feasibility

relation makes no constraints on item substitutions (i.e. if

every item may be substituted for every other item), and if the
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linear cost function is being used, then the minimum-cost

solution will always be a SCAT-type solution. In particular,

there will always be a single item which, when substituted for

every other item, yields a minimum cost. There are only two

reasons, then, to doubt the SCAT recommendations. One is that

not always is it feasible to allow every item to substitute for

every other item. Another is that the SCAT formula is not

linear. The SCAT formula may be close enough to linear,

however, to feel reasonably good about a SCAT analysis,

provided the feasibility relation does indeed permit us to

apply the recommendation SCAT gives.

Another interesting mathematical fact is that if we assume

a more liberal substitution policy, that is if we for the

purpose of analysis assume that more substitutions can be made

than are in practice permissible, and if we then apply a

procedure which leads to a minimum cost solution under the more

liberal assumptions, and if the solution thus obtained is

consistent with the original feasiblity constraints, then the

solution we obtain is the minimum cost solution. Thus the

recommendations made by SCAT may be used with a fair amount of

confidence whenever they make sense.

The real problem with the SCAT recommendations is that they

will not always make sense. There is no structure within SCAT

to handle a feasibility relation which makes real constraints

on substitutions. To create a framework in which such

constraints may be factored into the solution requires some

foundational mathematics.

The first tool which we wish to apply to aid in obtaining a

solution to the commonality problem is the concept of a

"separator" A separator is a relation used to separate a

single set of a partition into two disjoint subsets. For

example, if 6 is a separator and al 6 a2 (read "al is 6-related

to a2"), then the partition {{a_,a2,a3,a4 }}, with a_ being the

chosen substitute, is less cost-effective than {{a_,a3 },

{a2,a, }}, or {{al }, {a2,a3,a4 }}, or {{al,a3,a_ }, {a2 }}, or any

partition where a_ is in one set and a2 is in the other, if a2

is chosen as the substitute in the latter.

For the above linear cost function, the relation 6 defined

as follows is a separator:

al 6 aj is true whenever ai is a feasible substitute for aj

and

ki >= kj + dj/qj

Note that the above is equivalent to saying that k_qj >= cj .

In short, what we say when we say that this relation is a
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separator is that if we can always produce item aj from scratch

for no more than the cost of producing "qj more" of item al,

then we will never be better off to recommend a strategy which

includes substituting item ai for item aj .

For examples of other cost functions and separator

relations associated with those cost functions, see the paper

(Yeager 1987).

What we are aiming for with the introduction of the concept

of a separator relation is a way of reducing the number of

potential solutions which must be examined. The overall

strategy is to introduce an initial "solution" which is close

to the actual solution in the sense that we can obtain the

latter by a series of refinements of the former.

Suppose we partition the set of items into subsets which

have the following property: each set K of the partition which

contains item ai also contains all items aj which are not 6

related to al in either direction. That is, if it is false

that a_ is related to aj and it is false that aj is related to

al, then al and aj are in the same subset of the partition.

This defines a unique partition of the set of items, which we

will call the partition induced by the separator 6. Under

certain conditions it can be shown that every true solution of

the commonality problem is obtained by "refining" this

particular partition, i.e. splitting its subsets into smaller
subsets.

It turns out that one of the situations under which the

above partition represents a valid initial estimate of a

solution is that in which the elements of the set are linearly

ordered by the feasibility relation.
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Example I. The following comes from a set of design data on

nine types of storage tank intended for use on the NASA Space

Station Project. Cost figures are in thousands of dollars.

Tank # DDTE Unit cost Quantity Cost ki +d±/qi

dl ki qi ci

1 46.166

2 49.374

3 67.833

4 71.860

5 92.819

6 355.772

7 366.685

8 378.240

9 464.314

36.116

40.204

64 598

70 598

102 514

775 184

810 760

844 656

1152 108

1 82.29

1 89.57

4 326.23

4 354.25

2 297.85

2 1906.14

6 5231.25

3 2912.21

4 5072.75

82.29

89 57

81 56

88 57

148 92

953 07

871 87

970 74

1268 19

"Unique Cost" . ................... 16272.54

The feasibility relation is based solely on size. Since the

tanks are numbered in increasing order according to size, the

relation allows each tank to replace all tanks numbered lower

than it, thus establishing a linear order. The separator 6

defined above is graphically depicted in the following diagram.

Here the nodes are identified by tank number and the tanks

which are 6-related to tank t are reachable from node t via a

downward-trending path. For example, tank 9 is 6-related to

all other tanks, and tank 7 is 6-related to tanks i, 2, 3, 4,

and 5.
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9

ill
6 7 8

III
5
I

IIII
i 2 3 4

The subsets forming chains of non-related items are [9},

{6,7,8}, [5}, and {1,2,3,4}. The mathematical properties we

have established for separator relations assure us that any

solution of this commonality problem is obtained by refining

this partition.

Now let us contrast the performance of a "heuristic"

solution with that of a solution using the above knowledge of

the structure of the problem. A Prolog program to selectively

search for the optimal feasible partition of this set took six

minutes on an IBM XT to produce the following solution:

Set Representative Cost

[i,2] [2] 129.78
{3,4} [4] 636.64
[5] [5} 297.85
{6,7,8I {8I 9669.46
{9] {9] 5072.75

Minimum cost .......... 15806.48

The same program, utilizing partition {{1,2,3,41, [5], I6,7,8],

{911 as a starting point, arrived at the same solution in three

seconds. Note that the optimal solution is only one immediate

refinement away from that partition.

Example 2. A second set of data from an independent source,

also pertaining to tanks proposed for use on the Space Station

Project, is given below:
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Tank # DDTE
dl

Unit cost Quantity

kl qi

Cost

Ci

1 153.110

2 566.140

3 573.640

4 91.985

5 606.570

6 106.660

7 178.570

8 178.570

9 663.290

I0 566.140

II 549.650

12 604.520

13 200.900

14 306.376

15 101.800

16 1382.490

17 459.315

192.750

1395.895

1388.401

88 815

1551 440

109 060

259 000

259 000

1883 300

1395.895

1412.390

3877.855

701.580

1295.465

236.377

13966.940

2517.827

2

2

4

3

2

4

1

1

1

2

1

4

4

12

12

5

5

538 61

3357 92

6127 24

358 43

3709 45

542 90

437 57

437 57

2546 59

3357 92

1962 04

16115 92

3007 22

15851 90

2938 32

71216.99

13048.42

"Unique Cost" ....................... 145555.01

kl +dl/ql

269 31

1678 97

1531 81

119 48

1854 73

135 73

437 57

437 57

2546 59

1678.97

1962.04

4028.99

751.81

1321.00

244.86

14243.44

2609.69

The feasibility relation a for this set is more complex, and is

illustrated by the following diagram:
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(omit)

16
I

12

I
9

I
5

i
I I I I
2--3--II--I0---
I I I I

I
14

l__
r-- i
7--8 (omit)

T
1

I
6

I
4 -J

17

I
13

I
15

This feasibility relation has two components: tanks 13, 15,

and 17, which are linearly ordered with 17 being "most

substitutable", and the others, which are related in a more

complex way. This in fact represents two separate problems.

No tank in one group may be substituted for any tank in the

other group. So we split the problem up and attack it in two

pieces. Looking at the larger, more complex group, we see that

it is "almost" linearly ordered. Tank 16 may be substituted

for any other tank in the group, for example. But tanks 7 and

8 are mutually interchangeable, and the tanks in the group 2,

3, I0, and II are mutually interchangeable. The most glaring

exceptions are the two "omitted" relationships. If the

relation were "transitive" then tank I0 would be an acceptable

substitution for tank 4, and tank 12 would be an acceptable

substitute for tank 14. But the source supplying the data

specifically forbids those two substitutions. So we have a

non-transitive feasibility relation.

Extending the feasibility relation to include the two

omitted pairs gives us a transitive feasibility relation. If

we obtain a valid solution based on that expanded relation, we

have solved the problem. If not, we will have to approach the

solution in another manner.

Let us assume for now that our relation is transitive.

Even so, we cannot treat this problem the same as Example 1
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because the feasibility relation is not linear. To handle this

case, we introduce the notion of a selector. A selector is a

relation B on the set A which has the property that if a B b

then not only can a be substituted for b but whenever a and b
are in the same set K and each of a and b can be substituted

for any element of K, then a is always a more economical

choice. The selector relations on a set, like the separator

relations, are dependent on the cost function being used. A

very simple selector c for the linear cost function is defined
as follows:

ai u aj if and only if

(I) al is substitutable for aj ,

(2) kl <= kj , and

(3) di <= dj .

This is a very intuitive selector. It should be obvious

that if both the initial costs and the per-unit costs

associated with item ai are less than those respective costs

for item aj , then ai is always a better choice than aj . We

should point out here that there is another more finely

discriminating selector for the linear cost function (Yeager,

1987), but this one will do for the current example.

Another selector, which works for any cost function, is the

selector a" defined as a a" b if and only if a can be

substituted for b but b cannot be substituted for a. Since

there does not exist a set K containing both a and b in which

both of a and b can be substituted for all elements of K, a"

vacuously satisfies the requirements for a selector.

Finally, we observe that "the union of two selectors is a

selector". In particular, if we combine the selectors a" and

above into one relation, we still have a selector

It can be shown that if a separator 6 is contained in a

selector c', and if the partition induced by 6 has the property

that for each set K of the partition there is an element t

which is _'-related to every element of K, then there is a

minimum-cost solution which is a refinement of the partition

induced by 6 whose set of representatives includes all such

elements t.

Now let us look at the relation 6:
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The reader is invited to inspect this graph and confirm

that whenever two elements are 6-related they are also
o'-related - i.e. 6 is contained in _"

Here we see the importance of treating the example as two

separate problems. If we consider tanks 13, 15, and 17 as part

of the same set, then 6 will give us essentially no
information. If we throw them out, then the chains of

non-6-related elements are {161, {14}, {12}, {2,3,5,9,10,11},

{4,6}, and {1,7,8}. The substitution choices are forced by the
relation o', except that we are free to choose either tank 7 or

tank 8 in the final set, since the costs of the two tanks are
identical and each is o'-related to the other.

Using the above as an "initial approximation" to a

solution, the following results were obtained by an exhaustive
search which occupied less than a minute on an IBM AT:
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Set Representative Cost

{1,7,8} {7}
{2,3,10,11} {3}
{4,6} {6}
{5} {5}
{9} {9}
{12} {12}
{13} {13I
{14I {14}
{15} {15}
{16} {16}
{17I {17}

1082.07

13069 25

809 35

3709 45

2546 59

16115 92

3007 22

15851.90

2938.32

71216.99

13048.42

Minimum cost ............. 143395.48

Notice that the above solution is a valid solution to the

original problem, since it separates the pairs (4,10) and

(12,14).

To further document the results of the above search, we

present the following analysis of the partitioning of the

largest set, i.e. the set {2,3,5,9,10,11}. The representative

of each set in a given partition is underlined.

Number k of sets

in the partition

Best partition

into k subsets

Cost of

partition

1 {{2,3,5,9,10,II}I 23262.89

2 {{2,3,10,iI},{5,9}} 19382.44

3 {{2,3,10,iI},{5},{9}} 19325.29

4 {{2,3,10},{5},{9},{II}} 19898.93

5 {{2},{3,10},{5},{9},{II}} 20480.06

6 {{2},{3},{5},{9},{I0},{II}} 21061.18

In each of the above examples we had mathematical proof
that the solutions we obtained were correct. In the first

example it was practical to find the solution by an exhaustive

search strategy. In the second example we have reason to doubt

that such a search strategy is practical. In that example,

even after the initial partition (in which tanks 13, 15, and 17

were identified as forming a separate component), the solution

obtained by an exhaustive search would have taken almost four

hours even on our hypothetical million-potential-solutions-

a-second computer. In an environment in which several sets of

items need to be presented to a computer at a setting, this is

unacceptable. What's more, it is likely that even larger sets

of different items would need to be subjected to analysis. So
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the existence of mathematical properties that guarantee a

minimal-cost solution to lie in a highly restricted area of the

solution space is significant.

But even in situations where such mathematical laws are not

operating we need some help. We need to guide our search for

solutions more precisely, even if we may be steering toward a

near-optimal rather than an optimal solution. Consider the

following observation: the operation of finding and examining

all immediate refinements of a given partition (i.e. all

partitions obtained by splitting a single set of the original

partition into two smaller subsets) is equivalent to the

operation of finding all subsets of the set and thus has a

complexity no worse than 2 n , where n is the number of elements

of the set. Suppose we begin with a one-set partition, choose

the immediate refinement of minimum cost, and restrict our

search for solutions to refinements of this partition. Repeat

the procedure until all immediate refinements result in an

increase in cost. This is a natural, intuitive approach which

may have some mathematical basis.

Another approach which may have even more merit because of

its reduced complexity is to start with a partition consisting

of n singleton subsets and successively join pairs of subsets

until we can no longer reduce the cost with such a joining.

The complexity of the search for the "best" joining is no worse

than C_.2. For this type of strategy, a relation called a

joiner may be of some help. A joiner is a relation B which has

the property that when a B b and a and b are the chosen

representatives of respective sets K, and K2 of a partition,

then it is always more economical to join the two sets into one

and use the item a as the chosen representative. For some

examples of joiners for different cost functions, see (Yeager,

1987).

Notice in the last example that in breaking down the set

{2,3,5,9,10,11} into finer and finer partitions and

exhaustively searching for the most economical partition the

six "best" partitions of orders I, 2, 3, 4, 5, and 6 satisfied

a very interesting property. The best partition of order k was

always a refinement of the best partition of order k-I and a

"joining" of the partion of order k+l. To test whether this

might always be the case, when no mathematical basis was

discovered for the property, a large number of trials were

performed using random data. In a large majority of cases this

behavior was indeed present. However, several exceptions were
noted.
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CONCLUSIONSAND RECOMMENDATIONS

Figures 1-6 detail the recommended architecture for a

collection of software tools to aid the commonality analysis

process. Integration of these tools using a single, consistent

user interface is also recommended. A menu structure is the

simplest approach, but a natural language interface may be the

best long-term solution.

We are assuming here a "loosely coupled" configuration, in

which the actual creation and maintenance of the database is

performed by the DBMS itself. Commands and data are passed to
the DBMS from "front end" software modules and data is passed

from the DBMS back to those modules for the performance of

operations outside the capabilities of the DBMS.

The database creation module is illustrated in Figure I.

During database creation the database administrator makes a

number of decisions which will seriously affect the usefulness

of the database for the purpose of commonality analysis.

Attributes, names of attributes, representation (character

string or integer, for example), default values, and many other

database configuration factors must be carefully chosen.

Knowledge is an important component of the skills needed to
create such a database. Some of that knowledge will be of such

an ad hoc nature that it must reside with the database

administrator himself. The knowledge needed to enforce

consistency and uniformity across all commonality databases is

of a less changeable nature, however, and could conceivably be

encoded as rules which the database creation module would draw

upon in its interaction with the human Creator.

An essential ingredient of the database creation module is

its synonym bank. The purpose of the synonym bank is to insure

that different names are not being used in different

commonality databases to refer to logically equivalent

attributes. Each group of synonymous attribute names has a

default representative to be used as the actual attribute name.
The database administrator is informed of the substitution and

is given the chance to over-ride for good cause.

Figure 2 details the software component used for entering

of new data and new knowledge. As discussed above, knowledge

concerning commonality relationships among the data is

inherently associated with the data and should not be separated

from it. When new data is entered, the database administrator

should be prompted to review and perhaps modify the knowledge

about commonality relationships in the data.

In Figure 3 we see the first stage of the commonality

alternative selection module. Here the user requests a given
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set of data from a commonality database, and that data is

transferred to the front-end module along with the knowledge

needed for constructing a feasibility relation on the data.

Figure 4 depicts the data being alternately sorted and grouped

using the information from the knowledge base. This sorting

and grouping phase is applied iteratively, and the feasibility

relation is extended in size with each such application.

Finally, we see in Figure 5 the process in which commonality

alternative sets are created using the feasibility relation and

in which a subset database is generated for each set of

alternatives. If a denotes the feasibility relation, then each

set of alternatives is an a-connected component. What this

means is that records a and b are in the same set if there

exists a series of records xl, x2 ..... xk for which a = xl, b

= xk, and for each i = i, 2 ..... k-l, either xi a xi._ or x,._

a x,. Each subset is presented to the database administrator

or other user as it is generated. The user has the opportunity

then to (a) accept the set of alternatives as a valid set, (b)

discard the set of alternatives, or (c) accept a subset of the

set presented. In the latter two cases, the system has reason
to doubt the encoded knowledge which led to the generation of

that particular set of alternatives. It is important at that

point for the system to engage in a dialog with the user and

attempt to update its knowledge base so that the same mistake

does not recur.

The final module to discuss is the enhanced commonality

analysis module, shown in Figure 6. Here a given subset of

commonality alternatives is analyzed to find an optimal or

near-optimal substitution strategy. An essential ingredient

here is the feasibility relation generated in stage 2 of the

commonality alternative selection process. The commonality

analysis process breaks down into three sub-modules. The first

utilizes deterministic mathematical rules which narrow the

solution space as much as possible. The output from this

sub-module is a feasible partition which may be the true

minimum-cost solution or may be many refinements removed from

the minimum-cost solution, depending on the properties of this

particular feasibility relation and this particular set of

data. If the feasible partition is not known to be optimal,

then it is passed on to a submodule which attempts to produce a

lower-cost partition using heuristic strategies. Finally, if

it can be ascertained during the heuristic refinement process

that the number of possibilities remaining to be checked is

small enough that a complete pass through the entire set of

remaining partitions can be reasonably undertaken, the

sub-module for exhaustive search continues the refinement

process to produce the final solution.
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